series

- Industrial Motion

TiMOTION's MA2 series linear actuator was specifically designed for applications which face harsh working environments and require ruggedness and durability. Its IP69K protection ensures it will withstand high pressure water jets, and the ingress of dust and other solid contaminants. The MA2 also has optional Reed switches along the outer tube which allow users to adjust the stroke length. For improved control and accuracy of motion, the MA2 can be customized with many different feedback options depending on your application requirements. Example applications suitable for the MA2: Agricultural equipment such as spreaders, harvesters, grain handlers, combines and tractors.
Commercial and industrial applications such as commercial lawn mowers, scrubbers and sweepers, material handling equipment and livestock ventilation systems.

General Features

Voltage of motor

Maximum load
Maximum speed at full load
Stroke
Minimum installation dimension
IP rating
Certificate
Operational temperature range
Operational temperature range
at full performance
Options

12V DC, 24V DC, 36V DC;
$12 \mathrm{~V} D, 24 \mathrm{~V} D \mathrm{C}, 36 \mathrm{~V}$ DC (thermal control)
$6,000 \mathrm{~N}$ in push and pull
$43 \mathrm{~mm} / \mathrm{s}$ (with 1000 N in a push or pull condition)
$\geq 25 \sim 1000 \mathrm{~mm}$
\geq Stroke +131 mm
Up to IP69K
UL73, EMC
$-25^{\circ} \mathrm{C} \sim+65^{\circ} \mathrm{C}$
$+5^{\circ} \mathrm{C} \sim+45^{\circ} \mathrm{C}$

Hall sensors, POT, manual drive, Reed sensor on the outer tube

Note

Drawing

Standard Dimensions
(mm)

Load and Speed

CODE	Load (N)		Self Locking Force (N)	Typical Current (A)		Typical Speed (mm/s)	
	Push	Pull		No Load $24 \mathrm{~V} \text { DC }$	With Load 24V DC	No Load 24V DC	With Load 24V DC
Motor Speed (5200RPM, duty cycle 25\%)							
F	1000	1000	1000	2.7	8.4	52.5	43.0
G	2000	2000	2000	2.4	7.5	25.5	22.3
H	4000	4000	4000	2.3	8.0	13.2	11.1
J	6000	6000	6000	2.0	6.8	6.6	6.1

Note

1 Please refer to the approved drawing for the final authentic value.
2 This self-locking force level is reached only when a short circuit is applied on the terminals of the motor. All the TiMOTION control boxes have this feature built-in.

3 The current \& speed in table are tested with 24 V DC motor. With a 12 V DC motor, the current is approximately twice the current measured in 24 V DC. With a 36V DC motor, the current is approximately two-thirds the current measured in 24 V DC. Speed will be similar for all the voltages.

4 The current \& speed in table are tested when the actuator is extending under push load.
5 The current \& speed in table and diagram are tested with a stable 24 V DC power supply.
6 Standard stroke: Min. $\geq 25 \mathrm{~mm}$, Max. please refer to below table.

CODE	Load (N)	Max Stroke (mm)
H, J	≥ 4000	600
G	$=2000$	800
F	<1000	1000

Performance Data (24V DC Motor)

Motor Speed (5200RPM, Duty Cycle 25\%)

Speed vs. Load

Current vs. Load

MA2

Voltage	$1=12 \mathrm{VDC}$	$5=24 \mathrm{VDC}$, thermal protector
$2=24 \mathrm{~V} D$	$6=12 \mathrm{VDC}$, thermal protector	
	$3=36 \mathrm{VDC}$	$7=36 \mathrm{VDC}$, thermal protector
Load and Speed	See page 2	

Stroke (mm)

Retracted Length See page 5
(mm)

Rear Attachment $(\mathbf{m m})$	1 = Aluminum casting, clevis U, slot 8.2, depth 12.5, hole 10.2
See page 6	2 = Aluminum casting, clevis U, slot 8.2, depth 15.0, hole 10.2
	3 = Aluminum casting, clevis U, slot 8.2, depth 15.0, hole 12.8
	$4=$ Aluminum casting, clevis U, slot 8.2, depth 15.0, hole 12.2

Front Attachment $\quad 1=$ Iron inner tube with punched hole, without slot, hole 10.2
(mm) 2 = Iron inner tube with punched hole, without slot, hole 12.2

See page 6 \quad| $3=$ Iron inner tube with punched hole, without slot, hole 12.8 |
| :--- |
| $4=$ Aluminum casting, clevis U, slot 8.2 , depth 15.0 , hole 10.2 |
| $5=$ Aluminum casting, clevis U, slot 8.2 , depth 15.0 , hole 12.2 |
| $6=$ Aluminum casting, clevis U, slot 8.2 , depth 15.0 , hole 12.8 |
| $K=$ Rod end bearing, hole 12.8 |

Direction of	$1=90^{\circ}$	$2=0^{\circ}$

Installation

(Counterclockwise)

See page 7

Functions for Limit Switches See page 7	1 = Two switches at full retracted / extended positions to cut current 2 = Two switches at full retracted / extended positions to cut current + third one in between to send signal 6 = Two switches at full retracted / extended positions to cut current + send signal			
Reed Sensor on the Outer Ttube	$0=$ Without	1 = Reed sensor*1	2 = Reed sensor*2	
Output Signal	$0=$ Without	1 = POT	5 = Hall sensor*2	
Connector	$2=$ Tinned leads			
See page 7				
Cable Length (mm)	1 = Straight, 500	$2=$ Straight, 1000	3 = Straight, 1500	4 = Straight, 2000

IP Rating	$1=$ Without $2=I P 54$	$3=I P 66$ $6=I P 66 D$	$8=I P 69 K$
Manual Drive	$0=$ Without	$1=$ With	
T-Smart	$0=$ Without		

MA2 Ordering Key Appendix

Retracted Length (mm)

1. Calculate $A+B+C=Y$
2. Retracted length needs to \geq Stroke $+Y$

A. Rear/ Front Attachment

Front Attachment	Rear Attachment	
	1	$2,3,4$
$\mathbf{1 , 2 , 3}$	+131	+134
$\mathbf{4 , 5 , 6}$	+161	+164
\mathbf{K}	+178	+181

C. Output Signal

0,5
$1+20$

B. Stroke (mm)	
25~150	-
151~200	-
201~250	+10
251~300	+20
301~350	+30
351~400	+40
401~450	+50
451~500	+60
501~550	+70
551~600	+80
601~650	+90
651~700	+100
701~750	+110
751~800	+120
801~850	+130
851~900	+140
901~950	+155
951~1000	+160

Rear Attachment (mm)

1 = Aluminum casting, clevis U, slot
8.2, depth 12.5 , hole 10.2

2 = Aluminum casting, clevis U , slot 8.2, depth 15.0, hole 10.2

3 = Aluminum casting, clevis U , slot
8.2, depth 15.0, hole 12.8

4 = Aluminum casting, clevis U , slot 8.2, depth 15.0 , hole 12.2

Front Attachment (mm)

$1=$ Iron inner tube with punched hole, without slot, hole 10.2

5 = Aluminum casting, clevis U , slot 8.2, depth 15.0 , hole 12.2

2 = Iron inner tube with punched hole, without slot, hole 12.2

6 = Aluminum casting, clevis U , slot 8.2, depth 15.0, hole 12.8

3 = Iron inner tube with punched hole, without slot, hole 12.8

$\mathrm{K}=$ Rod end bearing, hole 12.8

4 = Aluminum casting, clevis U , slot 8.2, depth 15.0 , hole 10.2

MA2 Ordering Key Appendix

Direction of Rear Attachment (Counterclockwise)

$1=90^{\circ}$

$2=0^{\circ}$

Functions for Limit Switches

Wire Definitions						
CODE	(Green)	(Red)	O(White)	(Black)	(Yellow)	(Blue)
1	extend (VDC+)	N/A	N/A	N/A	retract (VDC+)	N/A
2	extend (VDC+)	N/A	middle switch pin B	middle switch pin A	retract (VDC+)	N/A
6	extend (VDC+)	N/A	upper limit switch	lower limit switch	retract (VDC+)	N/A

Connector

$2=$ Tinned leads

Terms of Use

The user is responsible for determining the suitability of TiMOTION products for a specific application.
TiMOTION products are subject to change without prior notice.

