MA5

series

Product Segments

- Industrial Motion

TiMOTION's MA5 linear actuator is specifically designed for applications which face harsh working environments and require ruggedness and durability. Its IP69K protection can withstand high pressure water jets, and the ingress of dust and other solid contaminants.

The MA5 can also be customized with various feedback options depending on the application requirements; moreover, it can be equipped with a grease nipple to increase the protection degree and life cycle. Suitable applications for MA5 include agricultural equipment, such as spreaders, harvesters, and grain handlers.

General Features

Maximum load
Maximum load
Maximum speed at full load

Stroke
Minimum installation dimension
IP rating
Operational temperature range
Operational temperature range at full performance
Options Hall sensors, POT, grease chamber

Drawing

Standard Dimensions (mm)

With Grease Chamber
Standard Dimensions (mm)

Load and Speed

CODE	Load (N)		Self Locking	Typical Current (A)	Typical Speed (mm/s)	
	Push	Pull	Force (N)	No Load	With Load	No Load

Motor Speed (5200RPM, duty cycle 25\%)

A	250	250	250	1.2	2.3	43.0	36.0
B	500	500	500	1.1	2.3	25.8	23.0
C	1000	1000	1000	1.1	2.3	14.0	11.8
D	1500	1500	1500	1.0	2.2	9.0	8.0
E	2000	2000	2000	1.0	2.2	7.1	6.2
W	500	500	500	1.3	5.0	54.0	35.0
Motor Speed (6600RPM, duty cycle 25\%)							
F	250	250	250	1.6	2.8	56.5	45.0
G	500	500	500	1.5	2.8	32.5	28.5
H	1000	1000	1000	1.5	2.8	16.5	14.3
K	1500	1500	1500	1.3	2.8	11.1	10.0
L	2000	2000	2000	1.3	2.8	8.8	7.7
Motor Speed (3800RPM, duty cycle 25\%)							
S	3500	2000	3500	0.9	2.8	3.2	2.4
Motor Speed (2200RPM, duty cycle 25\%)							
T	2000	2000	2000	0.3	1.2	3.2	2.4

Note

1 Please refer to the approved drawing for the final authentic value.
2 This self-locking force level is reached only when a short circuit is applied on the terminals of the motor. All the TiMOTION control boxes have this feature built-in.

3 The current \& speed in table are tested with 24 V DC motor. With a 12 V DC motor, the current is approximately twice the current measured in 24 V DC; speed will be similar for both voltages.

4 The current \& speed in table are tested when the actuator is extending under push load.
5 The current \& speed in table and diagram are tested with TiMOTION control boxes, and there will be around 10% tolerance depending on different models of the control box. (Under no load condition, the voltage is around 32V DC. At rated load, the voltage output will be around 24 V DC)

6 Standard stroke: Min. $\geq 20 \mathrm{~mm}$, Max. please refer to below table.

CODE	Load (N)	Max Stroke (mm) CODE	Load (N)	Max Stroke (mm)	
A, F	$\leqq 250$	1000	D, K	$\leqq 1500$	500
B, G, W	$\leqq 750$	800	E, L, T	$\leqq 2000$	450
C, H	$\leqq 1000$	600	S	$\leqq 3500$	300

Speed vs. Load

Current vs. Load

Note

1 The performance data in the curve charts shows theoretical value.

Speed vs. Load

Current vs. Load

Note

[^0]Performance Data (24V DC Motor)

Motor Speed (3800RPM)

Speed vs. Load

Current vs. Load

Note

1 The performance data in the curve charts shows theoretical value.

Performance Data (24V DC Motor)

Motor Speed (2200RPM)

Speed vs. Load

Current vs. Load

Note

1 The performance data in the curve charts shows theoretical value.

MA5
Version: 20190327-E

Voltage	$1=12 \mathrm{~V} \mathrm{DC}$	$2=24 \mathrm{~V} \mathrm{DC}$	$5=24 \mathrm{~V} \mathrm{DC}, \mathrm{PTC}$	$6=12 \mathrm{~V} \mathrm{DC}, \mathrm{PTC}$
Load and Speed	See page 3			

Stroke (mm)

Retracted Length See page 9

(mm)

Rear Attachment (mm)	4 = Aluminum casting, U clevis, slot 6.0 , width 10.5 , hole 6.4 , one piece casting with gear box	$6=$ Aluminum casting, U clevis, slot 6.0 , width 10.5 , hole 10.1, one piece casting with gear box
See page 10	5 = Aluminum casting, U clevis, slot 6.0 , width 10.5 , hole 8.0 , one piece casting with gear box	
Front Attachment (mm)	1 = Aluminum casting, hole 6.4	$4=\underset{6.4}{=}$ Aluminum CNC, U clevis, slot 6.0, depth 16.0, hole
	2 = Aluminum casting, hole 8.0	
See page 10	$\begin{aligned} & 3=\text { Aluminum CNC, U clevis, slot } 6.0 \text {, depth 16.0, hole } \\ & 10.0 \end{aligned}$	5 = Aluminum CNC, U clevis, slot 6.0, depth 16.0, hole 8.0
Direction of Rear Attachment (Counterclockwise)	$1=90^{\circ} \quad 2=0^{\circ}$	

See page 10

Functions for	$1=$ Two switches at full retracted / extended positions to cut current	
Limit Switches	$2=$ Two switches at full retracted / extended positions to cut current + third one in between to send signal	
See page 11	$3=$ Two switches at full retracted / extended positions to send signal	
	$4=$ Two switches at full retracted / extended positions to send signal + third one in between to send signal	
Output Signals	$0=$ Without	$1=$ POT
Connector	$1=$ DIN 6P, 90° plug	$2=$ Tinned leads sensor*2
See page 11		
Cable Length (mm)	$1=$ Straight, 300	$2=$ Straight, 600

IP Rating $\quad 6=1$ IP66D $\quad 9=I P 69 \mathrm{~K}$

Wiper Set \&	$0=$ Normal wiper, without grease chamber
Grease Nipple	$1=$ Enhanced wiper set, with grease chamber, grease nipple*1
	$2=$ Enhanced wiper set, with grease chamber, grease nipple 2
	$3=$ Enhanced wiper set, with grease chamber, without grease nipple

Retracted Length (mm)

1. Calculate $A+B+C=Y$
2. Retracted length needs to \geq Stroke $+Y$
3. The total Retacted length calculated must be equal or longer than below minimum value
(1) When choosing the wiper set \#0: And the front attachment is \#1, \#2, min retracted length $\geq 200 \mathrm{~mm}$, And the front attachment is \#3, \#4, \#5, min retracted length $\geq 212 \mathrm{~mm}$
(2) When choosing the wiper set \#1, \#2, \#3: And the front attachment is \#1, \#2min retracted length $\geq 238 \mathrm{~mm}$, And the front attachment is $\# 3, \# 4, \# 5 \mathrm{~min}$ retracted length $\geq 250 \mathrm{~mm}$

A. Front Attachment	
$\mathbf{1 , 2}$	+112
$\mathbf{3 , 4 , 5}$	+124

B. Load V.S. Stroke

Stroke (mm)	Load (N)	
	< 3500	$=3500$
20~150	-	+5
151~200	+2	+7
201~250	+2	+7
251~300	+2	+7
301~350	+12	+17
351~400	+22	+27
401~450	+32	+37
451~500	+42	+47
501~550	+52	+57
551~600	+62	+67
601~650	+72	+77
651~700	+82	+87
701~750	+92	+97
751~800	+102	+107
801~850	+112	+117
851~900	+122	+127
901~950	+132	+137
951~1000	+142	+147

C. Ouput Signals

0, 5
$1+30$

D. Wiper Set \& Grease Nipple

0
$\mathbf{1 , 2 , 3}+10$

Rear Attachment (mm)

4 = Aluminum casting, U clevis, slot 6.0 , width 10.5, hole 6.4, one piece casting with gear box

5 = Aluminum casting, U clevis, slot 6.0 , width 10.5 , hole 8.0 , one piece casting with gear box

6 = Aluminum casting, U clevis, slot 6.0 , width 10.5 , hole 10.1 , one piece casting with gear box

Front Attachment (mm)

$1=$ Aluminum casting, hole 6.4
2 =Aluminum casting, hole 8.0
$\varnothing 8$

5 = Aluminum CNC, U clevis, slot 6.0, depth 16.0, hole 8.0

$\varnothing 6.4$

3 = Aluminum CNC, U clevis, slot 6.0, depth 16.0, hole 10.0

4 = Aluminum CNC, U clevis, slot 6.0 , depth 16.0, hole 6.4

Direction of Rear Attachment (Counterclockwise)

$1=90^{\circ}$
$2=0^{\circ}$

MA5 Ordering Key Appendix

Functions for Limit Switches

Wire Definitions

CODE	Pin					
	1 (Green)	2 (Red)	3 (White)	4 (Black)	5 (Yellow)	6 (Blue)
1	extend (VDC+)	N/A	N/A	N/A	retract (VDC+)	N/A
2	extend (VDC+)	N/A	middle switch pin B	middle switch pin A	retract (VDC+)	N/A
3	extend (VDC+)	common	upper limit switch	N/A	retract (VDC+)	lower limit switch
4	extend (VDC+)	common	upper limit switch	medium limit switch	retract (VDC+)	lower limit switch

Connector

$1=$ DIN 6 P, 90° plug
$2=$ Tinned leads

Terms of Use

The user is responsible for determining the suitability of TiMOTION products for a specific application.
TiMOTION products are subject to change without prior notice.

[^0]: 1 The performance data in the curve charts shows theoretical value

