TA1

series

Product Segments

- Care Motion

The TA1 series linear actuator is TiMOTION's flagship model suited for healthcare applications. Industry certifications for the TA1 include IEC60601-1. In addition, the TA1 linear actuator supports IP rating up to IP66W. Other options include a manual or quick release system and Hall or Reed feedback sensors.

General Features

Voltage of motor	$12,24,36 \mathrm{~V}$ DC or 24 V DC (PTC)
Maximum load	$10,000 \mathrm{~N}$ in push
Maximum load	$4,000 \mathrm{~N}$ in pull
Maximum speed at full load	$23.4 \mathrm{~mm} / \mathrm{s}$ (with $1,000 \mathrm{~N}$ in a push or pull condition) Stroke Minimum installation dimension Color IP rating Certificate Operational temperature range Black or grey at full performance Options
	Up to IP66W
	IEC60601-1, ES60601-1, EN60601-1-2,
	Safety nut, quick release, Reed,
	Hall sensors

Drawing

Standard Dimensions
(mm)

Load and Speed

CODE	Load (N)		Self Locking	Typical Current (A)	Typical Speed (mm/s)	
	Push	Pull	Force (N)	No Load	With Load	No Load

Motor Speed (2600RPM, Duty Cycle 10\%)

C	5000	4000	5000	0.8	3.5	8.0	4.1
D	6000	4000	6000	0.8	3.5	6.0	3.1
F	2500	2500	2500	0.8	3.2	15.9	8.3
G	2000	2000	2000	0.8	2.8	21.4	12.1
H	1000	1000	1000	0.8	2.1	32.1	19.1
J	3500	3500	3500	0.8	3.6	11.9	6.0
K	8000	4000	8000	0.8	4.0	5.4	2.7

Motor Speed (3400RPM, Duty Cycle 10\%)

\mathbf{L}	6000	4000	6000	1.0	4.2	7.3	4.1
\mathbf{N}	2500	2500	2500	1.0	4.1	19.4	11.1
$\mathbf{0}$	2000	2000	2000	1.0	4.0	26.1	14.9
\mathbf{P}	1000	1000	1000	1.0	3.0	39.0	23.4
$\mathbf{0}$	3500	3500	3500	1.0	4.6	14.5	7.9
\mathbf{R}	8000	4000	8000	1.0	5.0	6.6	3.5
\mathbf{T}	5000	4000	5000	1.0	4.2	9.8	5.4

Motor Speed (3800RPM, Duty Cycle 10\%)

\mathbf{Y}	8000	4000	8000	1.2	5.3	7.7	4.4
\mathbf{B}	10000	4000	10000	1.2	5.3	5.7	3.2
\mathbf{U}	5000	4000	5000	1.2	4.7	11.3	6.6
\mathbf{W}	2500	2500	2500	1.2	4.6	23.0	13.4
\mathbf{Z}	3500	3500	3500	1.2	5.3	16.8	9.8

Note

1 Please refer to the approved drawing for the final authentic value.
2 This self-locking force level is reached only when a short circuit is applied on the terminals of the motor. All the TiMOTION control boxes have this feature built-in.

3 The current \& speed in table are tested with 24 V DC motor. With a 12 V DC motor, the current is approximately twice the current measured in 24 V DC. With a 36 V DC motor, the current is approximately two-thirds the current measured in 24 V DC. Speed will be similar for all the voltages.

4 The current \& speed in table are tested when the actuator is extending under push load.
5 The current \& speed in table and diagram are tested with TiMOTION control boxes, and there will be around 10% tolerance depending on different models of the control box. (Under no load condition, the voltage is around $32 \mathrm{~V} D C$. At rated load, the voltage output will be around 24 V DC)

6 Standard stroke: Min. $\geq 25 \mathrm{~mm}$, Max. please refer to below table.

CODE	Load (N)	Max Stroke (mm)
K, R, Y, B	≥ 8000	450
D, L	$=6000$	600
Others	<6000	1000

Performance Data (24V DC Motor)

Motor Speed (2600RPM, Duty Cycle 10\%)

Speed vs. Thrust

Current vs. Thrust

Performance Data (24V DC Motor)

Motor Speed (3400RPM, Duty Cycle 10\%)

Speed vs. Thrust

Current vs. Thrust

Performance Data (24V DC Motor)

Motor Speed (3800RPM, Duty Cycle 10\%)

Speed vs. Thrust

Current vs. Thrust

TA1
Version: 20190308-AC

Voltage	$1=12 \mathrm{~V} D C$	$2=24 \mathrm{~V} D C$	$3=36 \mathrm{~V} D C$	$5=24 \mathrm{~V}$ DC, PTC

Load and Speed $\quad \underline{\text { See page } 3}$

Stroke $(\mathbf{m m})$	See page 3
Retracted Length $(\mathbf{m m})$	See page 8

Rear Attachment (mm)	$0=$ Plastic, U clevis, slot 8.2, depth 15.5, hole 10.2, for load push <4000N \& pull <2500N	$\mathrm{H}=$ Aluminum CNC, without slot, hole 12.2 , for hand crank I = Aluminum CNC, slot 8.2 , depth 15.5 , hole 10 , for small
See page 9	1 = Plastic, U clevis, slot 8.2, depth 15.5, hole 12.2, for load push	backlash
	<4000N \& pull <2500N 2 = Aluminum casting, U clevis, slot 8.2, depth 15.5, hole 10.2	$J=\begin{aligned} & \text { Aluminum CNC, slot 8.2, depth } 15.5 \text {, hole 12, for small } \\ & \text { backlash }\end{aligned}$
	$3=$ Aluminum casting, U clevis, slot 8.2, depth 15.5, hole 12.2	K = Plastic, U clevis, slot 8.2, depth 12.5, hole 10.2, for load p
	4 = Aluminum casting, U clevis, slot 10.2, depth 15.5, hole 10.2	<4000N \& pull < 2500N, for spindle set hall sensors
	5 = Aluminum casting, U clevis, slot 10.2, depth 15.5, hole 12.2	L = Plastic, U clevis, slot 8.2, depth 12.5, hole 12.2, for load pu
	$\mathrm{C}=$ Aluminum casting, U clevis, slot 8.2 , depth 15.5 , hole 10.2 , with plastic T-busing	< 4000N \& pull < 2500N, for spindle set hall sensors

Front Attachment (mm)	$1=$ Punched hole on inner tube + plastic cap, without slot, hole 10.2 , with plastic bushing	$6=$ Punched hole on inner tube, without slot, hole 12.2 7 = Aluminum casting, U clevis, slot 6.2 depth 17.0, hole 10.2
See page 10	2 = Punched hole on inner tube + plastic cap, without slot, hole 12.2 3 = Plastic, U clevis, slot 8.2, depth 20.2, hole 10.2, for load push <4000N \& pull < 2500N 4 = Plastic, U clevis, slot 8.2, depth 20.2, hole 12.2, for load push < 4000 N \& pull < 2500 N $5=$ Punched hole on inner tube, without slot, hole 10.2 , with plastic bushing	$8=$ Aluminum casting, U clevis, slot 6.2 , depth 17.0, hole 12.2 $9=$ Aluminum casting, U clevis, slot 6.2 , depth 17.0, hole 10.2, with plastic T-bushing $\mathrm{J}=$ Aluminum casting, without slot, hole 10.2 , for dental chair K = Aluminum CNC, without slot, hole 10 , for small backlash L = Aluminum CNC, without slot, hole 12, for small backlash
Direction of Rear Attachment (Counterclockwise)	$1=0^{\circ} \quad 2=45^{\circ}$	$3=90^{\circ} \quad 4=135^{\circ}$

See page 11

Color	1 = Black $2=$ Grey (Pantone 428C)		
IP Rating	1 = Without $2=1 P 54$	3 = IP66	$4=$ Without housings $5=1 \mathrm{P} 66 \mathrm{~W}$
Emergency Release Function	$\begin{aligned} & 0=\text { Without } \\ & 1=\text { Quick release - for cable (Cable excluded) } \end{aligned}$		2 = Quick release - for handle
Special Functions for Spindle SubAssembly	$\begin{aligned} & 0=\text { Without (Standard) } \\ & 1=\text { Safety nut } \end{aligned}$		2 = Standard push only 3 = Standard push only + safety nut
Functions for Limit Switches See page 11	1 = Two switches at full retracted / extended positions to cut current $2=$ Two switches at full retracted / extended positions to cut current + third one in between to send signal $3=$ Two switches at full retracted / extended positions to send signal		4 = Two switches at full retracted / extended positions to send signal + third one in between to send signal $5=$ Two switches at full retracted / extended positions to send signal (For TC1, TC8, TC10, TC14; compatible with hall sensors)
Output Signal	$\begin{aligned} & 0=\text { Without } \\ & 2=\text { Hall sensor * } 2 \end{aligned}$		$\begin{aligned} & 3=\text { Reed Sensor } \\ & H=\text { Spindle set Hall sensors * } 2 \end{aligned}$
Connector See page 12	$\begin{aligned} & 1=\text { DIN } 6 \text { P, } 90^{\circ} \text { plug } \\ & 2=\text { Tinned leads } \\ & 4=\text { Big 01P, plug } \\ & C=\text { Y cable (For direct cut } \\ & \text { system, water proof, } \\ & \text { anti pull) } \end{aligned}$	$\mathrm{D}=$ Extension cable, not preset on motor cover (Cable legth 120 mm) R = Extension cable, preset on motor cover (Cable legth 50 mm)	$E=$ Molex 8P, plug $M=$ DIN 4P, plug for dental $F=$ DIN 6P, 180° plug, for chair (40510-143, TEC extension cable standard) standard option $N=$ DIN 4P, plug for dental $G=$ Audio plug chair (40510-040)
Cable Length (mm)	$\begin{aligned} & 0=\text { Straight, } 100 \\ & 1=\text { Straight, } 500 \\ & 2=\text { Straight, } 750 \\ & 3=\text { Straight, } 1000 \\ & 4=\text { Straight, } 1250 \end{aligned}$	$\begin{aligned} & 5=\text { Straight, } 1500 \\ & 6=\text { Straight, } 2000 \\ & 7=\text { Curly, } 200 \\ & 8=\text { Curly, } 400 \end{aligned}$	B H = For direct cut system. See page 12 $\mathrm{J}=$ For socket attached on motor, not preset attached on motor cover, 120 . See page 12 $R=$ For socket attached on motor, preset attached on motor cover, 70 . See page 12

TA1 Ordering Key Appendix

Retracted Length (mm)

1. Calculate $A+B+C+D+E=Y$
2. Retracted length needs to \geq Stroke $+Y$

A.					C.				
Front Attach.	Rear Attach.				Emergency Release	Load (N)			
	$0,1,2,3,$	H	I, J	K, L		<6000	$=6000$	$=8000$	$=10000$
	4, 5, C				0	-	-	-	-
1,2, 5, 6	+163	+171	-	+166	1,2	+24	+24	+24	+24
3,4	+185	+193	-	+188					
7, 8, 9	+175	+183	-	+178	D.				
J	+166	+174	-	+169	Spindle	Load (N)			
K, L	-	-	+174	-	Functions	<6000	$=6000$	$=8000$	$=10000$
					0	-	-	-	-
B.					1	-	-	-	-
Stroke (mm)	Load (N)				2,3	-	+3	+3	+3
	<6000	$=6000$	$=8000$	$=10000$					
25~150	-	-	-	+6	E.				
151~200	-	-	+5	+11	Spindle Functions	Emergency Release			
201~250	-	+5	+10	+16		0		1,2	
251~300	-	+10	+15	+21	0,1	-		-	
301~350	+5	+15	+20	+26	2,3	-		+3	
351~400	+10	+20	+25	+31					
401~450	+15	+25	+30	+36					
451~500	+20	+30	x	x					
501~550	+25	+35	x	x					
551~600	+30	+40	x	x					
601~650	+35	x	x	x					
651~700	+40	x	x	x					
701~750	+45	x	x	x					
751~800	+50	x	x	x					
801~850	+55	x	x	x					
851~900	+60	x	x	x					
901~950	+65	x	x	x					
951~1000	+70	x	x	x					

TA1 Ordering Key Appendix

Rear Attachment (mm)

$0=$ Plastic, U clevis, slot 8.2, depth 15.5, hole 10.2, for load push < 4000N \& pull < 2500N

4 = Aluminum casting, U clevis, slot 10.2 , depth 15.5 , hole 10.2

I = Aluminum CNC, slot 8.2, depth 15.5, hole 10, for small backlash

1 = Plastic, U clevis, slot 8.2, depth 15.5, hole 12.2, for load push < 4000 N \& pull < 2500

5 = Aluminum casting, U clevis, slot 10.2, depth 15.5 , hole 12.2

$J=$ Aluminum CNC, slot 8.2, depth 15.5, hole 12, for small backlash

2 = Aluminum casting, U clevis, slot 8.2, depth 15.5 , hole 10.2

$\mathrm{C}=$ Aluminum casting, U clevis, slot 8.2, depth 15.5, hole 10.2, with plastic T-busing

K = Plastic, U clevis, slot 8.2, depth 12.5, hole 10.2, for load push <4000N \& pull < 2500N, for spindle set hall sensors

3 = Aluminum casting, U clevis, slot 8.2, depth 15.5 , hole 12.2

H = Aluminum CNC, without slot, hole 12.2, for hand crank

L = Plastic, U clevis, slot 8.2, depth 12.5, hole 12.2, for load push <4000N \& pull < 2500N, for spindle set hall sensors

Front Attachment (mm)

1 = Punched hole on inner tube + plastic cap, without slot, hole 10.2, with plastic bushing

5 = Punched hole on inner tube, without slot, hole 10.2 , with plastic bushing

9 = Aluminum casting, U clevis, slot 6.2 , depth 17.0 , hole 10.2, with plastic T-bushing

2 = Punched hole on inner tube + plastic cap, without slot, hole 12.2

6 = Punched hole on inner tube, without slot, hole 12.2

$J=$ Aluminum casting, without slot, hole 10.2, for dental chair

3 = Plastic, U clevis, slot 8.2, depth 20.2, hole 10.2, for load push < 4000N \& pull < 2500N

7 = Aluminum casting, U clevis, slot 6.2 , depth 17.0 , hole 10.2

$\mathrm{K}=$ Aluminum CNC, without slot, hole 10, for small backlash

4 = Plastic, U clevis, slot 8.2, depth 20.2, hole 12.2, for load push < 4000N \& pull < 2500N

8 = Aluminum casting, U clevis, slot 6.2, depth 17.0, hole 12.2

L = Aluminum CNC, without slot, hole 12, for small backlash

TA1 Ordering Key Appendix

Direction of Rear Attachment (Counterclockwise)

$1=0^{\circ}$
$2=45^{\circ}$
$3=90^{\circ}$
$4=135^{\circ}$

Functions for Limit Switches

Wire Definitions						
CODE	Pin					
	1 (Green)	2(Red)	3 (White)	4 (Black)	5 (Yellow)	6 (Blue)
1	extend (VDC+)	N/A	N/A	N/A	retract (VDC+)	N/A
2	extend (VDC+)	N/A	middle switch pin B	middle switch pin A	retract (VDC+)	N/A
3	extend (VDC+)	common	upper limit switch	N/A	retract (VDC+)	lower limit switch
4	extend (VDC+)	common	upper limit switch	medium limit switch	retract (VDC+)	lower limit switch
5	extend (VDC+)	N/A	upper limit switch	common	retract (VDC+)	lower limit switch

TA1 Ordering Key Appendix

Connector

$1=$ DIN 6 P, 90° plug

$C=Y$ cable (For direct cut system, water proof, anti pull)

D = Extension cable, not preset on motor cover (Cable legth 120 mm)

$E=$ Molex 8P, plug

$F=$ DIN 6P, 180° plug, for TEC

$\mathrm{G}=$ Audio plug
$M=\underset{(40510-143, \text { standard) }}{\text { DIN } 4 P \text {, plug for dental chair }}$

Cable Length for Direct Cut System (mm)

CODE	L1	L2	L3
B	100	100	100
C	100	1000	400
D	100	2700	500
E	1000	100	100
F	100	600	1000
G	1500	1000	1000
H	100	100	1200

extension cable standard option

$N=$ DIN 4P, plug for dental chair (40510-040)

Terms of Use

The user is responsible for determining the suitability of TiMOTION products for a specific application.
TiMOTION products are subject to change without prior notice.

