TA25

series

Product Segments

- Comfort Motion

TiMOTION's TA25 series electric linear actuator uses a linear slide to move a load, instead of an extension tube. This linear slide mechanism allows for a significantly shorter retracted length and makes the TA25 a great solution for various furniture applications. The TA25 is designed to function as a direct cut system, eliminating the need for a control box, offering a simple and economical solution. Available options are Hall sensors and a special L-shaped mounting bracket.

General Features

Voltage of motor
Maximum load
Maximum speed at full load

Minimum installation dimension
Certificate
Operational temperature range Options

12 V DC or 24 V DC
$1,000 \mathrm{~N}$ in push / pull
$29 \mathrm{~mm} / \mathrm{s}$
(with $1,000 \mathrm{~N}$ in a push / pull condition)
$\geq 99 \mathrm{~mm}$
UL962
$+5^{\circ} \mathrm{C} \sim+45^{\circ} \mathrm{C}$
Hall sensor(s)

Drawing

Standard Dimensions
(mm)

Load and Speed

CODE	Load (N)		Self Locking Force (N)	Typical Current (A)		Typical Speed (mm/s)	
	Push	Pull		No Load $32 \mathrm{~V} \text { DC }$	With Load 24V DC	No Load 32V DC	With Load 24V DC
Motor Speed (3800RPM, duty cycle 10\%)							
B	1000	1000	100	1.3	4.5	54.0	29.0

Note

1 The current \& speed in table are tested with 24 V DC motor. With a 12 V DC motor, the current is approximately twice the current measured in 24 V DC; speed will be similar for both voltages.

2 This self-locking force level is reached only when a short circuit is applied on the terminals of the motor. All the TiMOTION control boxes have this feature built-in.

Performance Data (24V DC Motor)

Motor Speed (3800RPM, duty cycle 10\%)

Speed vs. Load

Current vs. Load

TA25

Voltage	$1=12 \mathrm{~V}$	$2=24 \mathrm{~V}$
Load and Speed	See page 2	

Stroke (mm)

Retracted Length $(\mathbf{m m})$	$122=$ Bracket on the front \& rear end \#0 $122=$ Bracket on the front \& rear end \#1	$099=$ Bracket on the front \& rear end \#2
Bracket	$0=$ Without	$1=$ Style A: Iron bracket

See page 5

TA25 Ordering Key Appendix

Minimum retracted length is according to bracket on the front \& rear end (mm)

| Bracket on the front \& rear end | Retracted length |
| :--- | :--- | :--- |
| $\mathbf{0}$ | 122 |
| $\mathbf{1}$ | 122 |
| $\mathbf{2}$ | 99 |

$0=$ Without

1 = Style A: Iron bracket

2 = Style B: Plastic bracket

Rear Attachment (mm)

$0=$ Bracket on the front \& rear end
1 = Bracket on the front \& rear end

TA25 Ordering Key Appendix

Functions for Limit Switches

Wire Definitions

CODE	Pin					
	1 (Green)	2 (Red)	\bigcirc (White)	4 (Black)	5 (Yellow)	6 (Blue)
1	extend (VDC+)	N/A	N/A	N/A	retract (VDC+)	N/A
2	extend (VDC+)	N/A	middle switch pin B	middle switch pin A	retract (VDC+)	N/A
3	extend (VDC+)	common	upper limit switch	N/A	retract (VDC+)	lower limit switch
4	extend (VDC+)	common	upper limit switch	medium limit switch	retract (VDC+)	lower limit switch

Connector

$1=$ DIN 6 P, 90° plug

2 = Tinned leads

$L=1+1,2$ motors direct cut system

Cable length (mm)

$$
K=1 \text { motor direct cut system }
$$

$L=1+1,2$ motors direct cut system

Terms of Use

The user is responsible for determining the suitability of TiMOTION products for a specific application. TiMOTION products are subject to change without prior notice.

