TA26

series

Product Segments

- Comfort Motion

TiMOTION's TA26 series electric linear actuator is designed for furniture applications such as recliners or lift chairs. This linear actuator is designed to function as a direct cut system, eliminating the need for a control box, offering a straightforward alternative to complex electric actuation systems.

General Features

Voltage of motor	12 V DC or 24 V DC
Maximum load	$4,000 \mathrm{~N}$ in push
Maximum load	$2,000 \mathrm{~N}$ in pull
Maximum speed at full load	$12.8 \mathrm{~mm} / \mathrm{s}$
	(with $2,000 \mathrm{~N}$ in a push or pull condition)
Minimum installation dimension	\geq Stroke +120 mm
Color	Black
Certificate	$\mathrm{UL962}$
Operational temperature range	$+5^{\circ} \mathrm{C} \sim+45^{\circ} \mathrm{C}$
Options	$\mathrm{Hall} \mathrm{sensor}^{\text {(s) }}$

Drawing
Standard Dimensions (mm)

Load and Speed

CODE	Load (N)		Self Locking	Typical Current (A)	Typical Speed (mm/s)	
	Push	Pull	Force (N)	No Load	With Load	No Load

Motor Speed (3800RPM, duty cycle 10\%)

A	4000	2000	4000	1.0	5.0	12.0	6.1
B	3000	2000	2500	1.0	4.5	18.0	7.5
C	2000	2000	1500	1.0	4.0	24.0	12.8

Note

1 The current \& speed in table are tested with 24 V DC motor. With a 12 V DC motor, the current is approximately twice the current measured in 24 V DC; speed will be similar for both voltages.

2 This self-locking force level is reached only when a short circuit is applied on the terminals of the motor. All the TiMOTION control boxes have this feature built-in.

3 The current \& speed in table are tested when the actuator is extending under push load.

Motor Speed (3800RPM)

Speed vs. Load

Current vs. Load

TA26

Voltage	$1=12 \mathrm{~V}$	$2=24 \mathrm{~V}$	$5=24 \mathrm{~V}, \mathrm{PTC}$
Load and Speed	See page 2		

Stroke (mm)

Retracted Length See page 5

(mm)
Rear Attachment $\quad 1=$ Plastic, clevis U, slot 6.2 , depth 16.0 , hole 10.2
$(\mathbf{m m})$

See page 5

Front Attachment (mm)	$1=$ Plastic, no slot, hole 8.2 $4=$ Aluminum casting, clevis U, slot 6.2, depth 17.0, $2=$ Plastic, no slot, hole 10.2 hole 10.2
See page 5	$\begin{aligned} & 3=\text { Aluminum casting, clevis } U \text {, slot } 6.2 \text {, depth } 17.0 \text {, } \\ & \text { hole } 8.2 \end{aligned}$
Special Functions for Spindle SubAssembly	$0=$ Without
Functions for Limit Switches	$1=$ Two switches at full retracted / extended positions to cut current
See page 6	$3=$ Two switches at full retracted / extended positions to send signal 4 = Two switches at full retracted/extended positions to send signal +3 rd LS to send signal
Output Signals	$0=$ Without $\quad 1=$ Hall sensor * $1 \quad 2=$ Hall sensor *2

Connector	$1=$ DIN $6 P, 90^{\circ}$ plug	K = Single motor, direct cut system	
See page 6	$2=$ Tinned leads	$L=1+1,2$ motors direct cut system	
	$3=$ Small 01P, plug		
Cable Length (mm)	$0=$ Straight, 100	$3=$ Straight, 1000	$6=$ Straight, 2000
	$1=$ Straight, 500	$4=$ Straight, 1250	$7=$ Curly, 200
	$2=$ Straight, 750	$5=$ Straight, 1500	$8=$ Curly, 400

Note

[^0]
TA26 Ordering Key Appendix

Retracted Length (mm)

1. Calculate $A+B=Y$
2. Retracted length needs to \geq Stroke $+Y$

A. Front Attachment

$\mathbf{1 , 2}$	+120
$\mathbf{3 , 4}$	+150

B. Stroke (mm)

0~150
151~200
201~250 +5
251~300 +10

301~350 +15
351~400 +20

Note

1 For stroke over $200 \mathrm{~mm},+5 \mathrm{~mm}$ for each increment of 50 mm stroke

Rear Attachment (mm)

1 = Plastic, clevis U, slot 6.2 , depth
16.0, hole 10.2

Front Attachment (mm)

1 = Plastic, no slot, hole 8.2
2 = Plastic, no slot, hole 10.2
3 = Aluminum casting, clevis U, slot 6.2, depth 17.0, hole 8.2

4 = Aluminum casting, clevis U, slot 6.2 , depth 17.0, hole 10.2

$\varnothing 8.2$

ø10.2

กั

TA26 Ordering Key Appendix

Functions for Limit Switches

Wire Definitions						
CODE	Pin					
	1 (Green)	2 (Red)	3 (White)	4 (Black)	5 (Yellow)	6 (Blue)
1	extend (VDC+)	N/A	N/A	N/A	retract (VDC+)	N/A
2	extend (VDC+)	N/A	middle switch pin B	middle switch pin A	retract (VDC+)	N/A
3	extend (VDC+)	common	upper limit switch	N/A	retract (VDC+)	lower limit switch
4	extend (VDC+)	common	upper limit switch	medium limit switch	retract (VDC+)	lower limit switch

Connector

Terms of Use

The user is responsible for determining the suitability of TiMOTION products for a specific application.
TiMOTION products are subject to change without prior notice.

[^0]: 1 The TL is designed especially for push applications, not suitable for pull applications

