TA31OR

series

Product Segments

- Care Motion

The TA31QR improves upon the TA31 with added design benefits and functionality, while providing a high quality yet economical option for medical applications. In particular, the TA31QR provides multiple output signal options. These include a spindle set Hall sensors or POT which will continue to send position feedback after the quick release action is performed. This feature allows the user to maintain accurate position within the control system without having to perform a system reset.

General Features

Voltage of motor
Maximum load
Maximum load
Maximum speed at full load
Stroke
Minimum installation dimension
Color
IP rating
Operational temperature range
Options

12, 24V DC; 12, 24V DC (PTC)
$5,000 \mathrm{~N}$ in push
$3,000 \mathrm{~N}$ in pull
$6.3 \mathrm{~mm} / \mathrm{s}$ (with 3500 N in a push condition)
$25 ~ 450 \mathrm{~mm}$
Stroke + 178mm
Black or grey
Up to IP66W
$+5^{\circ} \mathrm{C} \sim+45^{\circ} \mathrm{C}$
Safety nut, Hall sensors, POT, spindle set Hall sensors

Drawing

Standard Dimensions
(mm)

Load and Speed

CODE	Load (N)		Self Locking Force (N)	Typical Current (A)		Typical Speed (mm/s)	
	Push	Pull		No Load 32V DC	With Load 24V DC	No Load 32V DC	With Load 24V DC
Motor Speed (3800RPM, Duty Cycle 10\%)							
J	3500	3000	1000	0.8	3.5	11.2	6.3
K	5000	3000	1500	0.8	3.5	9.0	4.7

Note

1 With a 12 V motor, the current is approximately twice the current measured in 24 V ; speed will be similar for both voltages.
2 This self-locking force level is reached only when a short circuit is applied on the terminals of the motor. All the TiMOTION control boxes have this feature built-in.

3 Current and speed: Tested average value when extending in push direction.
4 Operational temperature range: $+5^{\circ} \mathrm{C} \sim+45^{\circ} \mathrm{C}$

Performance Data (24V DC Motor)

Motor Speed (3800RPM, Duty Cycle 10\%)

Speed vs. Load

Current vs. Load

Note

1 The performance data in the curve charts shows theoretical value.

Voltage	$1=12 \mathrm{~V} \mathrm{DC}$	$2=24 \mathrm{~V} \mathrm{DC}$	$5=24 \mathrm{~V} \mathrm{DC} PTC$,	$6=12 \mathrm{~V} \mathrm{DC} PTC$,
Load and Speed	See page 2			

Stroke (mm)	25~450
Retracted Length $(\mathbf{m m})$	See page 5

Rear Attachment (mm) See page 6	2 = Aluminum casting, U clevis, slot 8.2 , depth 17.0, hole 10.2 3 = Aluminum casting, U clevis, slot 8.2 , depth 17.0, hole 12.2	
	$\mathrm{C}=$ Aluminum casting, U clevis, slot 8.2, depth 17.0, hole 10.2, with T-bushing	
Front Attachment (mm)	$1=$ Punched hole on inner tube + plastic cap, without slot, hole 10.2, with plastic bush	6 = Punched hole on inner tube, wihout slot, hole 12.2 7 = Aluminum casting, U clevis, width 6.2, depth 17.0,
See page 6	2 = Punched hole on inner tube + plastic cap, without slot, hole 12.2	hole 10.2
	3 = Plastic, U clevis, width 8.2 , depth 20.0, hole 10.2, for push < 4000N and pull < 2500N	hole 12.2 $9=$ Aluminum casting, U clevis, width 6.2, depth 17.0,
	4 = Plastic, U clevis, width 8.2, depth 20.0, hole 12.2, for push < 4000N and pull < 2500N	hole 10.2, with T-bushing
	5 = Punched hole on inner tube, wihout slot, hole 10.2, with plastic bush	
Direction of Rear Attachment (Counterclockwise)	$1=0^{\circ} \quad 3=90^{\circ}$	

See page 7

Color	$1=$ Black	$2=$ Grey (Pantone 428C)		
IP Rating	$1=$ Without	$2=$ IP54	$3=$ IP66	$5=$ IP66W

Special Functions for Spindle SubAssembly	$\begin{aligned} & 0=\text { Without (Standard) } \\ & 1=\text { Safety nut } \end{aligned}$		2 = Standard push only 3 = Standard push only	fety nut
Functions for Limit Switches See page 7	1 = Two switches at full retracted / extended positions to cut current $2=$ Two switches at full retracted / extended positions to cut current + third one in between to send signal 3 = Two switches at full retracted / extended positions to send signal 4 = Two switches at full retracted / extended positions to send signal + third one in between to send signal 5 = Two switches at full retracted / extended positions to send signal (Operate with control box: TC1, TC8, TC10, TC14, TC21)			
Output Signals	$\begin{aligned} & 0=\text { Without } \\ & 2=\text { Hall sensor *2 } \end{aligned}$		$\begin{aligned} & P=P O T \\ & H=\text { Spindle set Hall sens } \end{aligned}$	
Connector See page 8	$\begin{aligned} & 1=\text { DIN 6P, } 90^{\circ} \text { plug } \\ & 2=\text { Tinned leads } \\ & 4=\text { Big 01P, plug } \end{aligned}$	C $=Y$ cable (direct D = Extension cable legth 120 mm) R = Extension cable 50 mm)	proof, anti-pull) set on motor cover (cable on motor cover (cable legth	$\begin{aligned} & \mathrm{E}=\text { Molex } 8 \mathrm{P}, \text { plug } \\ & \mathrm{F}=\text { DIN } 6 \mathrm{P}, 180^{\circ} \text { plug } \\ & \mathrm{G}=\text { Audio plug } \end{aligned}$
Cable Length (mm)	$\begin{aligned} & 0=\text { Straight, } 100 \\ & 1=\text { Straight, } 500 \\ & 2=\text { Straight, } 750 \end{aligned}$	$\begin{aligned} & 3=\text { Straight, } 1000 \\ & 4=\text { Straight, } 1250 \\ & 5=\text { Straight, } 1500 \end{aligned}$	$\begin{aligned} & 6=\text { Straight, } 2000 \\ & 7=\text { Curly, } 200 \\ & 8=\text { Curly, } 400 \end{aligned}$	B $\sim H=$ For direct cut system See page 8

TA310R Ordering Key Appendix

Retracted Length (mm)

1. Calculate $A+B+C+D=Y$
2. Retracted length needs to \geq Stroke $+Y$

A. Front Attachment			C. Load V.S. Special Functions for Spindle Sub-Assembly		
CODE			CODE	Load (N)	
1, 2, 5, 6	+178			3500	5000
3, 4	+201		0	-	-
7, 8,9	+193		1	-	-
B,C	+201		2	-	+3
			3	-	+3
B. Load V.S. Stroke					
Stroke (mm)	Load (N)		D. Signal Outputs		
	3500	5000	CODE		
25~150	-	-	0	-	
151~200	-	-	1	-	
201~250	-	-	2	-	
251~300	-	-	P	+7	
301~350	+5	+5	H	-	
351~400	+10	+10			
401~450	+15	+15			

TA31QR Ordering Key Appendix

Rear Attachment (mm)

2 = Aluminum casting, U clevis, slot
8.2, depth 17.0, hole 10.2

3 = Aluminum casting, U clevis, slot 8.2, depth 17.0, hole 12.2

$\mathrm{C}=$ Aluminum casting, U clevis, slot 8.2, depth 17.0, hole 10.2, with T-bushing

Front Attachment (mm)

1 = Punched hole on inner tube + plastic cap, without slot, hole 10.2, with plastic bush

$5=$ Punched hole on inner tube, wihout slot, hole 10.2 , with plastic bush

$9=$ Aluminum casting, U clevis, width 6.2 depth 17.0, hole 10.2, with T-bushing

2 = Punched hole on inner tube + plastic cap, without slot, hole 12.2

$\varnothing 12.2$

6 = Punched hole on inner tube, wihout slot, hole 12.2

3 = Plastic, U clevis, width 8.2, depth 20.0, hole 10.2, for push < 4000N and pull < 2500N

7 = Aluminum casting, U clevis, width 6.2 , depth 17.0 , hole 10.2

4 = Plastic, U clevis, width 8.2, depth 20.0, hole 12.2, for push < 4000N and pull < 2500N

8 = Aluminum casting, U clevis, width 6.2 , depth 17.0, hole 12.2

TA31QR Ordering Key Appendix

Direction of Rear Attachment (Counterclockwise)

$1=0^{\circ}$

$$
3=90^{\circ}
$$

Functions for Limit Switches

Wire Definitions

CODE	Pin					
	1 (Green)	2 (Red)	$\bigcirc 3$ (White)	- 4 (Black)	5 (Yellow)	6 (Blue)
1	extend (VDC+)	N/A	N/A	N/A	retract (VDC+)	N/A
2	extend (VDC+)	N/A	middle switch pin B	middle switch pin A	retract (VDC+)	N/A
3	extend (VDC+)	common	upper limit switch	N/A	retract (VDC+)	lower limit switch
4	extend (VDC+)	common	upper limit switch	medium limit switch	retract (VDC+)	lower limit switch
5	extend (VDC+)	N/A	upper limit switch	common	retract (VDC+)	lower limit switch

TA31QR Ordering Key Appendix

Connector

$1=$ DIN $6 P, 90^{\circ}$ plug

$C=Y$ cable (direct cut, water proof, anti-pull)

$D=$ Extension cable, not preset on motor cover (cable legth 120mm)

$R=$ Extension cable, preset on motor cover (cable legth 50mm)

$G=$ Audio plug

$2=$ Tinned leads

$4=$ Big 01P, plug

Cable length for direct cut system (mm)

CODE	L1	L2	L3
B	100	100	100
C	100	1000	400
D	100	2700	500
E	1000	100	100
F	100	600	1000
G	1500	1000	1000
H	100	100	1200

$E=$ Molex 8P, plug

Terms of Use

The user is responsible for determining the suitability of TiMOTION products for a specific application.
TiMOTION products are subject to change without prior notice.

