TA4

 series

Product Segments

- Comfort Motion - Industrial Motion

TiMOTION's TA4 series linear actuator is compact, quiet and powerful. It is designed to fit in an area specifically requiring a right angle motor and can be equipped with a Hall sensor for feedback. Certifications for the TA4 linear actuator include IEC60601-1, ES60601-1, UL73 and EMC. In addition, the TA4 is available with an optional IP54 or 66 rating.

General Features

Voltage of motor
Maximum load
Maximum load
Maximum speed at full load

Minimum installation dimension
Color
IP rating
Certificate
Operational temperature range
Options
Low noise

12 V DC or 24 V DC
$3,500 \mathrm{~N}$ in push
$2,000 \mathrm{~N}$ in pull
$16.6 \mathrm{~mm} / \mathrm{s}$ (with 800 N in a push or pull condition)
\geq Stroke +140 mm
Silver
Up to IP66
IEC60601-1, ES60601-1, UL73, EMC
$+5^{\circ} \mathrm{C} \sim+45^{\circ} \mathrm{C}$
Hall sensors

Load and Speed

CODE	Load (N)		Self Locking	Typical Current (A)	Typical Speed (mm/s)	
	Push	Pull	Force (N)	No Load	With Load	No Load

Motor Speed (4100RPM, duty cycle 10\%)

A	2000	2000	2000	1.0	2.5	9.4	5.0
B	1500	1500	1500	1.0	2.5	13.8	6.8
C	1000	1000	1000	1.0	3.0	26.1	11.6
D	800	800	800	1.0	2.8	36.9	16.6
E	3500	2000	3500	1.0	2.8	6.1	2.3

Motor Speed (3800RPM, duty cycle 10\%)

\mathbf{G}	2500	2000	2500	1.1	2.7	9.3	5.1
\mathbf{H}	2000	2000	2000	1.1	2.9	13.2	7.0
\mathbf{I}	1500	1500	1500	1.1	3.5	26.0	12.5
\mathbf{J}	3500	2000	3500	1.1	2.8	6.2	3.1

Motor Speed (3400RPM, duty cycle 10\%)

\mathbf{M}	1500	1500	1500	0.8	1.6	8.1	3.8
\mathbf{N}	1000	1000	1000	0.8	1.4	11.6	5.9
$\mathbf{0}$	500	500	500	0.8	1.4	21.9	11.3

Motor Speed (2200RPM, duty cycle 10\%)

\mathbf{R}	1500	1500	1500	0.8	1.4	8.1	3.7
\mathbf{S}	1000	1000	1000	0.8	1.5	16.5	6.9
\mathbf{T}	800	800	800	0.8	1.4	22.5	10.0

Note

1 Please refer to the approved drawing for the final authentic value.
2 Standard stroke: Min. $\geq 20 \mathrm{~mm}$, Max. please refer to below table
3 This self-locking force level is reached only when a short circuit is applied on the terminals of the motor. All the TiMOTION control boxes have this feature built-in.

4 The current \& speed in table are tested with 24 V DC motor. With a 12 V DC motor, the current is approximately twice the current measured in 24 V DC; speed will be similar for both voltages.

5 The current \& speed in table are tested when the actuator is extending under push load.
6 The current \& speed in table and diagram are tested with TiMOTION control boxes, and there will be around 10% tolerance depending on different models of the control box. (Under no load condition, the voltage is around 32V DC. At rated load, the voltage output will be around 24 V DC)

CODE	Load (N)	Max Stroke (mm)
C, D, F, K, L, N, O, P, O, S, T, U	≤ 1000	600
$\mathbf{B}, \mathbf{I}, \mathbf{M}, \mathbf{R}$	≤ 1500	500
A, H, V	≤ 2000	450
G	≤ 2500	400

Performance Data (24V DC Motor)

Motor Speed (4100RPM)

Speed vs. Load

Current vs. Load

Performance Data (24V DC Motor)

Motor Speed (3800RPM)

Speed vs. Load

Current vs. Load

Performance Data (24V DC Motor)

Motor Speed (3400RPM)

Speed vs. Load

Current vs. Load

Performance Data (24V DC Motor)

Motor Speed (2200RPM)

Speed vs. Load

Current vs. Load

TA4

Voltage	$1=12 \mathrm{~V} \mathrm{DC}$	$2=24 \mathrm{~V} \mathrm{DC}$	$5=24 \mathrm{~V} \mathrm{DC} PTC$,
Load and Speed	See page 2		

Stroke (mm)

Retracted Length See page 8

(mm)

Rear Attachment (mm)	$1=$ Aluminum casting, U clevis, slot 6.0 , width 11.0 , hole 6.4 2 = Aluminum casting, U clevis, slot 6.0 , width 11.0 , hole 8.0
See page 9	3 = Aluminum casting, U clevis, slot 6.0 , width 11.0, hole 10.0
Front Attachment (mm)	1 = Aluminum casting, hole 6.4
	2 = Aluminum casting, hole 8.0
See page 9	3 = Aluminum CNC, U clevis, slot 6.0, depth 16.0, hole 10.0
	4 = Aluminum CNC, U clevis, slot 6.0, depth 16.0, hole 6.4
	5 = Aluminum CNC, U clevis, slot 6.0, depth 16.0, hole 8.0

Direction of	$1=0^{\circ}$	$2=90^{\circ}$
Rear Attachment		
(Counterclockwise)		

See page 9

IP Rating	1 = Without	$2=1$ P54	3 \| P666
Special Functions for Spindle SubAssembly	$0=$ Without (standard)	2 = Standard push	
Functions for Limit Switches See page 10	1 = Two switches at full retracted / extended positions to cut current 2 = Two switches at full retracted / extended positions to cut current + third one in between to send signal $3=$ Two switches at full retracted / extended positions to send signal 4 = Two switches at full retracted / extended positions to send signal + third one in between to send signal		
Output Signals	$0=$ Without	5 = Hall sensor * 2	
Connector See page 10	$\begin{aligned} & 1=\text { DIN } 6 P, 90^{\circ} \text { plug } \\ & 2=\text { Tinned leads } \\ & 3=\text { Small 01P, plug } \end{aligned}$		```B=Y cable (for direct cut system, non water proof, non anti pull) E=Molex 8P, plug```
Cable Length (mm)	1 = Straight, 300	$2=$ Straight, 600	$3=$ Straight, 1000

TA4 Ordering Key Appendix

Retracted Length (mm)

1. Calculate $A+B+C=Y$
2. Retracted length needs to \geq Stroke $+Y$

A. Front Attachment	
$\mathbf{1 , 2}$	+140
$\mathbf{3 , 4 , 5}$	+160
B. $\mathbf{L o a d}(\mathbf{N})$	
$\mathbf{3 5 0 0}$	-
$=\mathbf{3 5 0 0}$	+5

C. Stroke (mm)	
20~150	-
151~200	-
$\mathbf{2 0 1 \sim 2 5 0}$	+5
251~300	+10
$\mathbf{3 0 1 \sim 3 5 0}$	+15
$\mathbf{3 5 1 \sim 4 0 0}$	+20
$\mathbf{4 0 1 \sim 4 5 0}$	+25
$\mathbf{4 5 1 \sim 5 0 0}$	+30
$\mathbf{5 0 1 \sim 5 5 0}$	+35
$\mathbf{5 5 1 \sim 6 0 0}$	+40
$\mathbf{6 0 1 \sim 6 5 0}$	+45
$\mathbf{6 5 1 \sim 7 0 0}$	+50
$\mathbf{7 0 1 \sim 7 5 0}$	+55
$\mathbf{7 5 1 \sim 8 0 0}$	+60
$\mathbf{8 0 1 \sim 8 5 0}$	+65
$\mathbf{8 5 1 \sim 9 0 0}$	+70
$\mathbf{9 0 1 \sim 9 5 0}$	+75
$\mathbf{9 5 1 \sim 1 0 0 0}$	+80

Rear Attachment (mm)

1 = Aluminum casting, U clevis, slot
6.0 , width 11.0, hole 6.4

2 = Aluminum casting, U clevis, slot 6.0 , width 11.0, hole 8.0

3 = Aluminum casting, U clevis, slot
6.0 , width 11.0 , hole 10.0

Front Attachment (mm)

$1=$ Aluminum casting, hole 6.4
$\varnothing 6.4$

2 = Aluminum casting, hole 8.0
$\varnothing 8$

9

3 = Aluminum CNC, U clevis, slot 6.0, $\quad 4$ = Aluminum CNC, U clevis, slot 6.0, depth 16.0, hole 10.0

ø6.4

5 = Aluminum CNC, U clevis, slot 6.0, depth 16.0, hole 8.0

Direction of Rear Attachment (Counterclockwise)

$1=0^{\circ}$
$2=90^{\circ}$

TA4 Ordering Key Appendix

Functions for Limit Switches

Wire Definitions

CODE	Pin					
	1 (Green)	2 (Red)	3 (White)	4 (Black)	5 (Yellow)	6 (Blue)
1	extend (VDC+)	N/A	N/A	N/A	retract (VDC+)	N/A
2	extend (VDC+)	N/A	middle switch pin B	middle switch pin A	retract (VDC+)	N/A
3	extend (VDC+)	common	upper limit switch	N/A	retract (VDC+)	lower limit switch
4	extend (VDC+)	common	upper limit switch	medium limit switch	retract (VDC+)	lower limit switch

Connector

$1=$ DIN 6P, 90° plug

$2=$ Tinned leads

$3=$ Small 01P, plug

$B=Y$ cable (for direct cut system, non water proof, non anti pull)

Cable length for direct cut system (mm)			
CODE	L1	L2	L3
B	100	100	100
C	100	1000	400
D	100	2700	500
E	1000	100	100
F	100	600	1000
G	1500	1000	1000
H	100	100	1200

$E=$ MOLEX 8P, plug

Terms of Use

The user is responsible for determining the suitability of TiMOTION products for a specific application. TiMOTION products are subject to change without prior notice.

