TA6

series

Product Segments

- Comfort Motion

TiMOTION's TA6 series linear actuator is designed for lift applications like recliners, lifting chairs and movie theater seating. Its right angle design reduces noise and allows for fitment into most applications. Industry certifications for the TA6 linear actuator include EMC and RoHS. In addition, the TA6 is available with optional Hall sensors for position feedback. It can also be used where freewheeling push only functionality is desired.

General Features

Voltage of motor
Maximum load
Maximum load
Maximum speed at full load

Stroke
Minimum installation dimension
Color
Certificate
Operational temperature range Options

12, 24 or 36 V DC
$6,000 \mathrm{~N}$ in push
$4,000 \mathrm{~N}$ in pull
$23.4 \mathrm{~mm} / \mathrm{s}$
(with 1000 N in a push or pull condition)
$\geq 25 \sim 1000 \mathrm{~mm}$
\geq Stroke +163 mm
Black
UL962, EMC
$+5^{\circ} \mathrm{C} \sim+45^{\circ} \mathrm{C}$
Freewheeling push only, safety nut,
Hall sensors

Drawing
Standard Dimensions
(mm)

Load and Speed

CODE	Load (N)		Self Locking	Typical Current (A)	Typical Speed (mm/s)	
	Push	Pull	Force (N)	No Load	With Load	No Load

Motor Speed (2600RPM, Duty Cycle 10\%)

C	5000	4000	5000	0.8	3.5	8.0	4.1
D	6000	4000	6000	0.8	3.5	6.0	3.1
F	2500	2500	2500	0.8	3.2	15.9	8.3
G	2000	2000	2000	0.8	2.8	21.4	12.1
H	1000	1000	1000	0.8	2.1	32.1	19.1
J	3500	3500	3500	0.8	3.6	11.9	6.0

Motor Speed (3400RPM, Duty Cycle 10\%)

\mathbf{L}	6000	4000	6000	1.0	4.2	7.3	4.1
\mathbf{N}	2500	2500	2500	1.0	4.1	19.4	11.1
$\mathbf{0}$	2000	2000	2000	1.0	4.0	26.1	14.9
\mathbf{P}	1000	1000	1000	1.0	3.0	39.0	23.4
$\mathbf{0}$	3500	3500	3500	1.0	4.6	14.5	7.9
\mathbf{T}	5000	4000	5000	1.0	4.2	9.8	5.4

Motor Speed (3800RPM, Duty Cycle 10\%)

\mathbf{X}	6000	4000	6000	1.2	4.4	8.6	5.0
\mathbf{U}	5000	4000	5000	1.2	4.7	11.3	6.6
\mathbf{W}	2500	2500	2500	1.2	4.6	23.0	13.4
\mathbf{Z}	3500	3500	3500	1.2	5.3	16.8	9.8

Note

1 Please refer to the approved drawing for the final authentic value.
2 This self-locking force level is reached only when a short circuit is applied on the terminals of the motor. All the TiMOTION control boxes have this feature built-in.

3 The current \& speed in table are tested with 24 V DC motor. With a 12 V DC motor, the current is approximately twice the current measured in 24 V DC. With a 36 V DC motor, the current is approximately two-thirds the current measured in 24 V DC. Speed will be similar for all the voltages.

4 The current \& speed in table are tested when the actuator is extending under push load.
5 The current \& speed in table and diagram are tested with TiMOTION control boxes, and there will be around 10% tolerance depending on different models of the control box. (Under no load condition, the voltage is around $32 \mathrm{~V} D \mathrm{C}$. At rated load, the voltage output will be around 24 V DC)

6 Standard stroke: Min. $\geq 25 \mathrm{~mm}$, Max. please refer to below table.

CODE	Load (N)	Max Stroke (mm)
D, L,X	$=6000$	600
Others	<6000	1000

Performance Data (24V DC Motor)
Motor Speed (2600RPM, Duty Cycle 10\%)

Speed vs. Load

Current vs. Load
 Performance Data (24V DC Motor)

Motor Speed (3400RPM, Duty Cycle 10\%)

Speed vs. Load

Current vs. Load
 Performance Data (24V DC Motor)

Motor Speed (3800RPM, Duty Cycle 10\%)

Speed vs. Load

Current vs. Load

Voltage	$1=12 \mathrm{~V} \mathrm{DC}$	$2=24 \mathrm{~V} \mathrm{DC}$	$3=36 \mathrm{~V} \mathrm{DC}$
Load and Speed	See page 3		

Retracted Length See page 8

(mm)

Rear Attachment
$(\mathbf{m m})$

See page 9

Front Attachment (mm)	$1=$ Punched hole on inner tube + plastic cap, without slot, hole 10.2 , with plastic bushing	$6=$ Punched hole on inner tube, without slot, hole 12.2 7 = Aluminum casting, U clevis, slot 6.2, depth 17.0, hole
See page 9	2 = Punched hole on inner tube + plastic cap, without slot, hole 12.2	10.2
	3 = Plastic, U clevis, slot 8.2, depth 20.2, hole 10.2, for load push < 4000N \& pull < 2500N	8 = Aluminum casting, U clevis, slot 6.2, depth 17.0, hole 12.2
	load push < 4000N \& pull < 2500N 4 = Plastic, U clevis, slot 8.2, depth 20.2, hole 12.2, for load push < 4000N \& pull < 2500N	$9=$ Aluminum casting, U clevis, slot 6.2, depth 17.0, hole 10.2 , with plastic T-bushing
	$5=$ Punched hole on inner tube, without slot, hole 10.2, with plastic bushing	

Color $1=$ Black

Special Functions for Spindle SubAssembly	$\begin{aligned} & 0=\text { Without } \\ & 1=\text { Safety nut } \end{aligned}$		$\begin{aligned} & 2=\text { Standard push } \\ & 3=\text { Standard push } \end{aligned}$	ety nut
Functions for Limit Switches See page 10	1 = Two switches at full retracted / extended positions to cut current 2 = Two switches at full retracted / extended positions to cut current + third one in between to send signal 3 = Two switches at full retracted / extended positions to send signal $4=$ Two switches at full retracted / extended positions to send signal + third one in between to send signal			
Output Signals	$0=$ Without	2 = Hall sensor * 2		
Connector See page 10	$\begin{aligned} & 1=\text { DIN } 6 \mathrm{P}, 90^{\circ} \text { plug } \\ & 2=\text { Tinned leads } \end{aligned}$	$\begin{aligned} & 3=\text { Small 01P, plug } \\ & B=Y \text { cable (For dir } \end{aligned}$	stem, non water proo	pull)
Cable Length (mm)	$\begin{aligned} & 0=\text { Straight, } 100 \\ & 1=\text { Straight, } 500 \\ & 2=\text { Straight, } 750 \end{aligned}$	$\begin{aligned} & 3=\text { Straight, } 1000 \\ & 4=\text { Straight, } 1250 \\ & 5=\text { Straight, } 1500 \end{aligned}$	$\begin{aligned} & 6=\text { Straight, } 2000 \\ & 7=\text { Curly, } 200 \\ & 8=\text { Curly, } 400 \end{aligned}$	B $\sim H=$ For direct cut system See page 10

TA6 Ordering Key Appendix

Retracted Length (mm)

1. Calculate $A+B+C=Y$
2. Retracted length needs to \geq Stroke $+Y$

A. Front Attachment	
CODE	
$\mathbf{1 , 2 , 5 , 6}$	+163
$\mathbf{3 , 4}$	+185
$\mathbf{7 , 8}, 9$	+175

C. Front Attachment V.S Special Function

Front Spindle Function
Attachment
$0,1 \quad 2,3$
1,2, 5, 6
$+5$
3, 4
7, 8, 9

B. Load V.S. Stroke

Stroke (mm) Load (N)
~150
151~200

$\mathbf{2 0 1 \sim 2 5 0}$	-	+5
$\mathbf{2 5 1 \sim 3 0 0}$	-	+10
$\mathbf{3 0 1 \sim 3 5 0}$	+5	+15
$\mathbf{3 5 1 \sim 4 0 0}$	+10	+20
$\mathbf{4 0 1 \sim 4 5 0}$	+15	+25
$\mathbf{4 5 1 \sim 5 0 0}$	+20	+30
$\mathbf{5 0 1 \sim 5 5 0}$	+25	+35
$\mathbf{5 5 1 \sim 6 0 0}$	+30	x
$\mathbf{6 0 1 \sim 6 5 0}$	+35	x
$\mathbf{6 5 1 \sim 7 0 0}$	+40	x
$\mathbf{7 0 1 \sim 7 5 0}$	+45	x
$\mathbf{7 5 1 \sim 8 0 0}$	+50	x
$\mathbf{8 0 1 \sim 8 5 0}$	+55	x
$\mathbf{8 5 1 \sim 9 0 0}$	+60	+65
$\mathbf{9 0 1 \sim 9 5 0}$	+70	
$\mathbf{9 5 1 \sim 1 0 0 0}$		

Attachment	0,1	2,3
$\mathbf{1 , 2 , 5 , 6}$	-	+5

Rear Attachment (mm)

$1=U$ clevis plastic, slot 6.1, hole
10.2

Front Attachment (mm)

$1=$ Punched hole on inner tube + plastic cap, without slot, hole 10.2, with plastic bushing

$5=$ Punched hole on inner tube, without slot, hole 10.2, with plastic bushing

9 = Aluminum casting, U clevis, slot 6.2 , depth 17.0 , hole 10.2 , with plastic T-bushing

$2=$ Punched hole on inner tube + plastic cap, without slot, hole 12.2

6 = Punched hole on inner tube, without slot, hole 12.2

3 = Plastic, U clevis, slot 8.2, depth 20.2, hole 10.2, for load push < 4000N \& pull < 2500N

7 = Aluminum casting, U clevis, slot 6.2 , depth 17.0 , hole 10.2

4 = Plastic, U clevis, slot 8.2, depth 20.2, hole 12.2, for load push < 4000N \& pull < 2500N

$8=$ Aluminum casting, U clevis, slot 6.2, depth 17.0, hole 12.2

TA6 Ordering Key Appendix

Functions for Limit Switches

Wire Definitions

CODE	Pin					
	1 (Green)	2 (Red)	\bigcirc (White)	4 (Black)	5 (Yellow)	6 (Blue)
1	extend (VDC+)	N/A	N/A	N/A	retract (VDC+)	N/A
2	extend (VDC+)	N/A	middle switch pin B	middle switch pin A	retract (VDC+)	N/A
3	extend (VDC+)	common	upper limit switch	N/A	retract (VDC+)	Iower limit switch
4	extend (VDC+)	common	upper limit switch	medium limit switch	retract (VDC+)	lower limit switch

Connector

$1=$ DIN 6 P, 90° plug

$2=$ Tinned leads

$3=$ Small 01P, plug

$B=Y$ cable (for direct cut system, non water proof, non anti pull)

Cable length for direct cut system $(\mathbf{m m})$			
CODE	L1	L2	L3
B	100	100	100
C	100	1000	400
D	100	2700	500
E	1000	100	100
F	100	600	1000
G	1500	1000	1000
H	100	100	1200

Terms of Use

The user is responsible for determining the suitability of TiMOTION products for a specific application.
TiMOTION products are subject to change without prior notice.

