TA7

series

Product Segments

- Care Motion

TiMOTION's TA7 is one of the classic linear actuators for medical applications. The TA7's design is compliant with key standards such as IEC60601-1 and ES60601-1.In addition, the TA7 linear actuator is available with an optional IP54, IP66 or IP66W rating. Medical equipment is typical application for the TA7 series linear actuator.

General Features

Voltage of motor	12,24, or 36 V DC
Maximum load	$10,000 \mathrm{~N}$ in push
Maximum load	$4,000 \mathrm{~N}$ in pull
Maximum speed at full load	$23.4 \mathrm{~mm} / \mathrm{s}$
	(with $1,000 \mathrm{~N}$ in a push or pull condition)
Stroke	$25 \sim 1000 \mathrm{~mm}$
Minimum installation dimension	\geq Stroke +171 mm
Color	Black or grey
IP rating	Up to IP66W
Certificate	IEC60601-1, ES60601-1, IEC60601-1-2,
	EMC
Operational temperature range	$+5^{\circ} \mathrm{C} \sim+45^{\circ} \mathrm{C}$
Options	Safety nut, Hall / Reed sensor(s)

Drawing

Standard Dimensions
(mm)

Load and Speed

Motor Speed (2600RPM)

C	5000	4000	5000	0.8	3.5	8.0	4.1
D	6000	4000	6000	0.8	3.5	6.0	3.1
F	2500	2500	2500	0.8	3.2	15.9	8.3
G	2000	2000	2000	0.8	2.8	21.4	12.1
H	1000	1000	1000	0.8	2.1	32.1	19.1
J	3500	3500	3500	0.8	3.6	11.9	6.0
K	8000	4000	8000	0.8	4.0	5.4	2.7

Motor Speed (3400RPM)

\mathbf{L}	6000	4000	6000	1.0	4.2	7.3	4.1
\mathbf{N}	2500	2500	2500	1.0	4.1	19.4	11.1
$\mathbf{0}$	2000	2000	2000	1.0	4.0	26.1	14.9
\mathbf{P}	1000	1000	1000	1.0	3.0	39.0	23.4
$\mathbf{0}$	3500	3500	3500	1.0	4.6	14.5	7.9
\mathbf{R}	8000	4000	8000	1.0	5.0	6.6	3.5
\mathbf{T}	5000	4000	5000	1.0	4.2	9.8	5.4

Motor Speed (3800RPM)

\mathbf{Y}	8000	4000	8000	1.2	5.3	7.7	4.4
\mathbf{B}	10000	4000	10000	1.2	5.3	5.7	3.2
\mathbf{U}	5000	4000	5000	1.2	4.7	11.3	6.6
\mathbf{W}	2500	2500	2500	1.2	4.6	23.0	13.4
\mathbf{Z}	3500	3500	3500	1.2	5.3	16.8	9.8

Note

1 Please refer to the approved drawing for the final authentic value.
2 This self-locking force level is reached only when a short circuit is applied on the terminals of the motor. All the TiMOTION control boxes have this feature built-in.

3 The current \& speed in table are tested with 24 V DC motor. With a 12 V D motor, the current is approximately twice the current measured in 24 V DC. With a 36 V DC motor, the current is approximately two-thirds the current measured in 24 V DC. Speed will be similar for all the voltages.

4 The current \& speed in table are tested when the actuator is extending under push load.
5 The current \& speed in table and diagram are tested with TiMOTION control boxes, and there will be around 10% tolerance depending on different models of the control box. (Under no load condition, the voltage is around 32 V DC. At rated load, the voltage output will be around 24 V DC)

6 Standard stroke: Min. $\geq 25 \mathrm{~mm}$, Max. please refer to below table.

CODE	Load (N)	Max Stroke (mm)
K, R,Y, B	≥ 8000	450
D, L	$=6000$	600
Others	<6000	1000

Performance Data (24V DC Motor)

Motor Speed (2600RPM)

Speed vs. Thrust

Current vs. Thrust

Speed vs. Thrust

Current vs. Thrust

Performance Data (24V DC Motor)

Motor Speed (3800RPM)

Speed vs. Thrust

Current vs. Thrust

TA7

Voltage	$1=12 \mathrm{~V} \mathrm{DC}$	$2=24 \mathrm{~V} \mathrm{DC}$

Load and Speed See page 2

Stroke $(\mathbf{m m})$	See page 2
Retracted Length $(\mathbf{m m})$	See page 7

Rear Attachment (mm)	2 = Aluminum casting, U clevis, slot 6.2, depth 17.0, hole 10.2
	3 = Aluminum casting, U clevis, slot 6.2, depth 17.0, hole 12.2
See page 9	4 = Aluminum casting, U clevis, slot 8.2, depth 17.0, hole 10.2
	5 = Aluminum casting, U clevis, slot 8.2, depth 17.0, hole 12.2
	$\mathrm{C}=$ Aluminum casting, U clevis, slot 8.2, depth 17.0, hole 10.2, T-bush

Front Attachment (mm)

See page 9~10

1 = Punched hole on inner tube + plastic cap, without slot, hole 10.2, with plastic bushing
$2=$ Punched hole on inner tube + plastic cap, without slot, hole 12.2
3 = Plastic, U clevis, slot 8.2, depth 20.2, hole 10.2, for load push < 4000N \& pull < 2500N
4 = Plastic, U clevis, slot 8.2, depth 20.2, hole 12.2, for load push < 4000N \& pull < 2500N
5 = Punched hole on inner tube, without slot, hole 10.2, with plastic bushing
$6=$ Punched hole on inner tube, without slot, hole 12.2
7 = Aluminum casting, U clevis, slot 6.2 , depth 17.0, hole 10.2

8 = Aluminum casting, U clevis, slot 6.2, depth 17.0, hole 12.2

9 = Aluminum casting, U clevis, slot 6.2, depth 17.0, hole 10.2 , with plastic T-bushing
$J=$ Aluminum casting, without slot, hole 10.2 , for dental chair

Direction of Rear Attachment (Counterclockwise)	$1=0^{\circ}$	$3=90^{\circ}$

See page 10

Color	$1=$ Black	$2=$ Grey (Pantone 428C)		
IP Rating	$1=$ Without	$2=\mid P 54$	$3=\mid P 66$	$5=I P 66 \mathrm{~W}$

Special Functions for Spindle SubAssembly	$\begin{aligned} & 0=\text { Without } \\ & 1=\text { Safety nut } \end{aligned}$	2 = Standard push only 3 = Standard push only + safety nut
Functions for Limit Switches See page 10	1 = Two switches at full retracted / extended positions to cut current 2 = Two switches at full retracted / extended positions to cut current + third one in between to send signal $3=$ Two switches at full retracted / extended positions to send signal 4 = Two switches at full retracted / extended positions to send signal + third one in between to send signal 5 = Two switches at full retracted / extended positions to send signal (Operate with control box: TC1, TC8, TC10, TC14)	
Output Signals	$0=$ Without $\quad 1=$ Hall sensor * 1	2 = Hall sensor *2 3 = Reed Sensor
Connector	1 = DIN 6P, 90° plug	$\mathrm{E}=$ Molex 8P, plug
See page 11	$\begin{aligned} & 2=\text { Tinned leads } \\ & 4=\text { Big 01P, plug } \\ & C= Y \text { cable (For direct cut system, water proof, anti pull) } \\ & D=\text { Extension cable, not preset on motor cover } \\ & \text { (Cable legth } 120 \mathrm{~mm} \text {) } \\ & \text { R }=\text { Extension cable, preset on motor cover } \\ & \text { (Cable legth 50mm) } \end{aligned}$	$F=$ DIN $6 P, 180^{\circ}$ plug, for TEC extension cable standard option $M=$ DIN 4P, dental chair plug (40510-143, standard) $N=$ DIN 4P, dental chair plug (40510-040) $\mathrm{G}=$ Audio plug
Cable Length	$0=$ Straight, 100 mm $3=$ Straight, 1000 mm $1=$ Straight, 500 mm $4=$ Straight, 1250 mm $2=$ Straight, 750 mm $5=$ Straight, 1500 mm	$6=$ Straight, 2000 mm B $\sim H=$ For direct cut system $7=$ Curly, 200 mm See page 11 $8=$ Curly, 400 mm

TA7 Ordering Key Appendix

Retracted Length (mm)

1. Calculate $A+B+C=Y$
2. Retracted length needs to \geq Stroke $+Y$

A. Front Attachment	
CODE	
$\mathbf{1 , 2 , 5 , 6}$	+171
$\mathbf{3 , 4}$	+192
$\mathbf{7 , 8 , 9}$	+183
\mathbf{J}	+172

B. Load V.S. Stroke

Stroke (mm) Load (N)

	<6000	$=6000$	$=8000$	$=10000$
25~150	-	-	-	+5
151~200	-	-	+5	+10
201~250	-	+5	+10	+15
251~300	-	+10	+15	+20
301~350	+5	+15	+20	+25
351~400	+10	+20	+25	+30
401~450	+15	+25	+30	+35
451~500	+20	+30	-	-
501~550	+25	+35	-	-
551~600	+30	+40	-	-
601~650	+35	-	-	-
651~700	+40	-	-	-
701~750	+45	-	-	-
751~800	+50	-	-	-
801~850	+55	-	-	-
851~900	+60	-	-	-
901~950	+65	-	-	-
951~1000	+70	-	-	-

C. Front Attachment V.S Special Function

Front Spindle Function
Attachment
0,1
2, 3

Load (N) < 6000
$\mathbf{1 , 2 , 5} 6 \quad+5$
3, 4
7,8,9
J
Load (N) $\mathbf{6 0 0 0}$
1, 2, 5, $6 \quad+8$
3, 4
7,8,9 - +3
J

Rear Attachment (mm)

2 = Aluminum casting, U clevis, slot
6.2, depth 17.0, hole 10.2

$\mathrm{C}=$ Aluminum casting, U clevis, slot 8.2, depth 17.0, hole 10.2, T-bush

3 = Aluminum casting, U clevis, slot 6.2 , depth 17.0 , hole 12.2

4 = Aluminum casting, U clevis, slot 8.2, depth 17.0, hole 10.2

5 = Aluminum casting, U clevis, slot 8.2, depth 17.0, hole 12.2

Front Attachment (mm)

$1=$ Punched hole on inner tube + plastic cap, without slot, hole 10.2, with plastic bushing

$\varnothing 10.2$

5 = Punched hole on inner tube, without slot, hole 10.2, with plastic bushing

2 = Punched hole on inner tube + plastic cap, without slot, hole 12.2

$\varnothing 12.2$

$6=$ Punched hole on inner tube, without slot, hole 12.2

3 = Plastic, U clevis, slot 8.2, depth 20.2, hole 10.2, for load push < 4000N \& pull < 2500N

7 = Aluminum casting, U clevis, slot 6.2 , depth 17.0 , hole 10.2

4 = Plastic, U clevis, slot 8.2, depth 20.2, hole 12.2, for load push < 4000N \& pull < 2500N

8 = Aluminum casting, U clevis, slot 6.2, depth 17.0, hole 12.2

Front Attachment (mm)

9 = Aluminum casting, U clevis, slot 6.2 , depth 17.0, hole 10.2, with plastic T-bushing

$J=$ Aluminum casting, without slot, hole 10.2, for dental chair

Direction of Rear Attachment (Counterclockwise)

$1=0^{\circ}$

$$
3=90^{\circ}
$$

Functions for Limit Switches

Wire Definitions

CODE	Pin					
	1 (Green)	2 (Red)	3 (White)	4 (Black)	5 (Yellow)	6 (Blue)
1	extend (VDC+)	N/A	N/A	N/A	retract (VDC+)	N/A
2	extend (VDC+)	N/A	middle switch pin B	middle switch pin A	retract (VDC+)	N/A
3	extend (VDC+)	common	upper limit switch	N/A	retract (VDC+)	lower limit switch
4	extend (VDC+)	common	upper limit switch	medium limit switch	retract (VDC+)	lower limit switch
5	extend (VDC+)	N/A	upper limit switch	common	retract (VDC+)	lower limit switch

Connector

$1=$ DIN $6 P, 90^{\circ}$ plug

$2=$ Tinned leads

$4=$ Big 01P, plug

$C=Y$ cable (For direct cut system, water proof, anti pull)

Cable length for direct cut system (mm)			
CODE	L 1	L 2	L 3
B	100	100	100
C	100	1000	400
D	100	2700	500
E	1000	100	100
F	100	600	1000
G	1500	1000	1000
H	100	100	1200

$\mathrm{D}=$ Extension cable, not preset on motor cover (Cable legth 120 mm)

$R=$ Extension cable, preset on motor
cover (Cable legth 50 mm)

$N=$ DIN 4P, dental chair plug (40510040)

$E=$ Molex 8P, plug

$\mathrm{G}=$ Audio plug

Terms of Use

The user is responsible for determining the suitability of TiMOTION products for a specific application. TiMOTION products are subject to change without prior notice.

