TA9

series

- Comfort Motion
 - Ergo Motion

TiMOTION's TA9 is one of the smart furniture actuator options with compact dimension. This linear actuator is designed with a custom gear box, molded with a specially formulated plastic material which allows the TA9 to support load ratings up to 2500 N . An EMC certification has been attained for this series, which is also available with optional IP54 or IP66 protection.

General Features

Voltage of motor	$12,24 \mathrm{~V}$ DC or 24 V DC (PTC)
Maximum load	$2,500 \mathrm{~N}$ in push
Maximum load	$1,000 \mathrm{~N}$ in pull
Maximum speed at full load	$30 \mathrm{~mm} / \mathrm{s}$
	(with 500 N in a push or pull condition)
Stroke	$\geq 20 \sim 600 \mathrm{~mm}$
Minimum installation dimension	\geq Stroke +140 mm
Color	Black or grey
IP rating	Up to IP66
Certificate	IEC60601-1, ES60601-1, IEC60601-1-2,
	UL962, EMC
Operational temperature range	$+5^{\circ} \mathrm{C} \sim+45^{\circ} \mathrm{C}$
Options	Hall sensors

Drawing

Standard Dimensions
(mm)

Load and Speed

CODE	Load (N)		Self Locking	Typical Current (A)	Typical Speed (mm/s)	
	Push	Pull	Force (N)	No Load	With Load	No Load

Motor Speed (4100RPM, Duty Cycle 10\%)

A	2000	1000	2000	1.0	2.5	9.4	5.0
B	1500	1000	1500	1.0	2.5	13.8	6.8
C	1000	1000	1000	1.0	3.0	26.1	11.6
D	800	800	800	1.0	2.8	36.9	16.6
F	500	500	500	1.0	2.8	58.3	30.0

Motor Speed (3800RPM, Duty Cycle 10\%)

\mathbf{G}	2500	1000	2500	1.1	2.7	9.3	5.1
\mathbf{H}	2000	1000	2000	1.1	2.9	13.2	7.0
\mathbf{I}	1500	1000	1500	1.1	3.5	26.0	12.5
\mathbf{K}	1000	1000	1000	1.1	3.2	36.5	17.8
\mathbf{L}	700	700	700	1.1	3.2	56.5	24.2

Motor Speed (3400RPM, Duty Cycle 10\%)

\mathbf{M}	1500	1000	1500	0.8	1.6	8.1	3.8
\mathbf{N}	1000	1000	1000	0.8	1.4	11.6	5.9
\mathbf{O}	500	500	500	0.8	1.4	21.9	11.3
\mathbf{P}	400	400	400	0.8	1.4	30.0	15.5
$\mathbf{0}$	300	300	300	0.8	1.4	46.5	24.0
Motor Speed (2200RPM, Duty Cycle 10\%)							
V	2000	1000	2000	0.8	1.4	5.6	2.6
R	1500	1000	1500	0.8	1.4	8.1	3.7
S	1000	1000	1000	0.8	1.5	16.5	6.9
T	800	800	800	0.8	1.4	22.5	10.0
U	500	300	500	0.8	1.4	35.5	15.6

Note

1 Please refer to the approved drawing for the final authentic value.
2 This self-locking force level is reached only when a short circuit is applied on the terminals of the motor. All the TiMOTION control boxes have this feature built-in.

3 The current \& speed in table are tested with 24V DC motor. With a 12 V DC motor, the current is approximately twice the current measured in 24 V DC; speed will be similar for both voltages.

4 The current \& speed in table are tested when the actuator is extending under push load.
5 The current \& speed in table and diagram are tested with TiMOTION control boxes, and there will be around 10% tolerance depending on different models of the control box. (Under no load condition, the voltage is around 32 V DC. At rated load, the voltage output will be around 24 V DC)

6 Standard stroke: Min. $\geq 20 \mathrm{~mm}$, Max. please refer to below table.

CODE	Load (N)	Max Stroke (mm)
C, D, F, K, L, N, O, P, O, S, T, U	≤ 1000	600
B, I, M, R	≤ 1500	500
A, H, V	≤ 2000	450
G	≤ 2500	400

Performance Data (24V DC Motor)

Motor Speed (4100RPM, Duty Cycle 10\%)

Speed vs. Thrust

Current vs. Thrust

Performance Data (24V DC Motor)

Motor Speed (3800RPM, Duty Cycle 10\%)

Speed vs. Thrust

Current vs. Thrust

Performance Data (24V DC Motor)

Motor Speed (3400RPM, Duty Cycle 10\%)

Speed vs. Thrust

Current vs. Thrust

Performance Data (24V DC Motor)

Motor Speed (2200RPM, Duty Cycle 10\%)

Current vs. Thrust

TA9

Voltage	$1=12 \mathrm{~V} \mathrm{DC}$	$2=24 \mathrm{~V} \mathrm{DC}$	$5=24 \mathrm{~V} \mathrm{DC} PTC$,
Load and Speed	See page 3		

Stroke (mm)

Retracted Length

(mm)

See page 9
Rear Attachment $\quad 1=$ Plastic, U clevis, slot 5.2, depth 13.0, hole 8.0, with plastic T-busing
$(\mathbf{m m})$

See page 10

Color	1 = Black	2 = Grey (Pantone	
IP Rating	1 = Without	$2=1$ P54	3 = P966
Special Functions for Spindle SubAssembly	$0=$ Without (standard)	2 = Standard push	
Functions for Limit Switches See page 11	$1=$ Two switches at full retracted / extended positions to cut current 2 = Two switches at full retracted / extended positions to cut current +3 rd LS to send signal 3 = Two switches at full retracted / extended positions to send signal 4 = Two switches at full retracted / extended positions to send signal + 3rd LS to send signal		
Output Signal	$0=$ Without	5 = Hall sensor * 2	
Connector	1 = DIN 6P, 90 ${ }^{\circ}$ plug		$\mathrm{C}=\mathrm{Y}$ cable (for direct cut system, water proof, anti pull)
See page 11	$\begin{aligned} & 2 \text { = Tinned leads } \\ & 4=\text { Big 01P, plug } \end{aligned}$		$\mathrm{E}=$ Molex 8P, plug
Cable Length (mm)	$\begin{aligned} & 0=\text { Straight, } 100 \\ & 1=\text { Straight, } 500 \\ & 2=\text { Straight, } 750 \end{aligned}$	$\begin{aligned} & 3=\text { Straight, } 1000 \\ & 4=\text { Straight, } 1250 \\ & 5=\text { Straight, } 1500 \end{aligned}$	$\begin{array}{ll} 6=\text { Straight, } 2000 & \text { B } \sim \text { H F For direct cut system } \\ 7=\text { Coiled, } 200 & \\ 8=\text { Coiled, } 400 & \end{array}$

TA9 Ordering Key Appendix

Retracted Length (mm)

1. Calculate $A+B=Y$
2. Retracted length needs to \geq Stroke $+Y$

A. Front Attach.

$\mathbf{1 , 2}$	+140
$\mathbf{3 , 4}$	+153

B. Stroke (mm)	
$\mathbf{2 0 \sim 2 0 0}$	-
201~250	+5
$\mathbf{2 5 1 \sim 3 0 0}$	+10
$\mathbf{3 0 1 \sim 3 5 0}$	+15
$\mathbf{3 5 1 \sim 4 0 0}$	+20
$\mathbf{4 0 1 \sim 4 5 0}$	+25
$\mathbf{4 5 1 \sim 5 0 0}$	+30
$\mathbf{5 0 1 \sim 5 5 0}$	+35
$\mathbf{5 5 1 \sim 6 0 0}$	+40

Rear Attachment (mm)

1 = Plastic, U clevis, slot 5.2, depth
13.0, hole 8.0, with plastic

T-busing

Front Attachment (mm)

$1=$ Aluminum casting, no slot, hole 8.0

$\varnothing 8$

3 = Aluminum casting, U clevis, width 6.0, depth 13.0, hole 8.0

4 = Aluminum casting, U clevis, width 6.0, depth 13.0, hole 10.0

Direction of Rear Attachment (Counterclockwise)

$1=0^{\circ}$

$$
2=90^{\circ}
$$

TA9 Ordering Key Appendix

Functions for Limit Switches

Wire Definitions

CODE	Pin					
	1 (Green)	2 (Red)	3 (White)	4 (Black)	5 (Yellow)	6 (Blue)
1	extend (VDC+)	N/A	N/A	N/A	retract (VDC+)	N/A
2	extend (VDC+)	N/A	middle switch pin B	middle switch pin A	retract (VDC+)	N/A
3	extend (VDC+)	common	upper limit switch	N/A	retract (VDC+)	lower limit switch
4	extend (VDC+)	common	upper limit switch	medium limit switch	retract (VDC+)	lower limit switch

Connector

$1=$ DIN 6 P, 90° plug
$2=$ Tinned leads

$4=$ Big 01P, plug

$C=Y$ cable (For direct cut system, water proof, anti pull)

Cable length for direct cut system $(\mathbf{m m})$			
CODE	L 1	L 2	L 3
B	100	100	100
C	100	1000	400
D	100	2700	500
E	1000	100	100
F	100	600	1000
G	1500	1000	1000
H	100	100	1200

$E=$ Molex 8P, plug

Terms of Use

The user is responsible for determining the suitability of TiMOTION products for a specific application. TiMOTION products are subject to change without prior notice.

